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Abstract—Analyzing the increasingly large volumes of data
that are available today, possibly including the application of
custom machine learning models, requires the utilization of
distributed frameworks. This can result in serious productiv-
ity issues for “normal” data scientists. This paper introduces
AFrame, a new scalable data analysis package powered by a
Big Data management system that extends the data scientists’
familiar DataFrame operations to efficiently operate on managed
data at scale. AFrame is implemented as a layer on top of Apache
AsterixDB, transparently scaling out the execution of DataFrame
operations and machine learning model invocation through a
parallel, shared-nothing big data management system. AFrame
incrementally constructs SQL++ queries and leverages Aster-
ixDB’s semistructured data management facilities, user-defined
function support, and live data ingestion support. In order to
evaluate the proposed approach, this paper also introduces an
extensible micro-benchmark for use in evaluating DataFrame
performance in both single-node and distributed settings via
a collection of representative analytic operations. This paper
presents the architecture of AFrame, describes the underlying
capabilities of AsterixDB that efficiently support modern data
analytic operations, and utilizes the proposed benchmark to
evaluate and compare the performance and support for large-
scale data analyses provided by alternative DataFrame libraries.

Index Terms—DataFrames, distributed data management,
large-scale data analysis, data science, benchmark

I. INTRODUCTION

In this era of big data, extracting useful patterns and intel-
ligence for improved decision-making is becoming a standard
practice for many businesses. Modern data increasingly has
three main characteristics: the first characteristic is that much
of it is generated and available on social media platforms.
The rapid growth in the numbers of mobile devices and
smartphones, Facebook users, and YouTube channels all com-
bine to create a data-rich social media landscape. Information
distribution through this landscape reaches a massive audience.
As a result, social media is now used as a medium for
advertisement, communication, and even political discourse.

The second characteristic of modern data is the rapid rate
at which the data is continuously being generated. In order
to accommodate the rate and frequency at which modern data
arrives, distributed data storage and management are required.
Storing such massive data in a traditional file system is no
longer an ideal solution because analysis often requires a
complete file scan to retrieve even a modest subset of the

data. In order to minimize time-to-insight, analyses need to
be performed in close to real-time on the ever-arriving data.
Database management systems are able to store, manage, and
utilize indexes and query optimization to efficiently retrieve
subsets of their data, enabling interactive data manipulation.

The third characteristic of modern data is the richness of the
information encapsulated in the data. Modern data is not only
massive in size but is also often nested and loosely-structured.
For example, Twitter [15] provides JSON data containing
information related to each message along with information
about the user who posted that message and their location
details if available. Other social media sites such as Facebook
and Instagram provide similar information through their web
services. As a result, modern data enables analyses that go
beyond interpreting content; one can also analyze the structure
and relationships of the data, such as identifying communities.
Information extraction from modern data requires complex
custom algorithms and analyses using machine learning.

The growing interest in collecting, monitoring, and inter-
preting large volumes of modern data for business advan-
tages motivates the development of data analytic tools. The
requirements that modern, at-scale data analysis impose on
analytic tools are not met by a single current system. Instead,
data scientists are typically required to integrate and maintain
several separate platforms, such as HDFS [35], Spark [5], and
TensorFlow [16], which then demands systems expertise from
analysts who should instead be focusing on data modeling,
selection of machine learning techniques, and data exploration.

In this paper, we focus on providing a ‘scale-independent’
user experience when moving from a local exploratory data
analysis environment to a large-scale distributed workflow. We
present AFrame, an Apache AsterixDB [18] based extension
of DataFrame. AFrame is a data exploration library that
provides a Pandas-like DataFrame [27] experience on top of
a big data management platform that can support large-scale
semi-structured data exploration and analysis. AFrame differs
from other DataFrame libraries by leveraging a complete big
data management system and its query processing capabilities
to efficiently scale DataFrame operations and optimize data
access on large distributed datasets.

The second contribution of this paper is a distributed
DataFrame benchmark for general data analytics. The perfor-
mance of a big data system is greatly affected by the charac-
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teristics of its workload. Understanding these characteristics
and being able to compare various systems’ performance on
a set of related analytic tasks will lead to more effective tool
selection. Various benchmarks [9], [22], [24], [26], [32] have
been developed for big data framework assessment, but these
benchmarks are either SQL-oriented benchmarks for OLTP
or OLAP operations or focus on end-to-end application-level
performance. To our knowledge, there is no standard Data-
Frame benchmark yet for large-scale data analytic use cases.

In order to evaluate the performance of our framework,
we have designed a micro-benchmark to compare various
distributed DataFrame libraries’ performance by issuing a set
of common analytic operations. Our DataFrame benchmark
provides a detailed comparison of each analytic operation by
separating the data preparation time (e.g., DataFrame creation)
and expression execution time to give better insight into each
system’s performance and operation overheads.

The rest of this paper is organized as follows: Section 2
discusses background and related work. Section 3 provides
an overview of the AFrame system architecture, user model,
and data analytic support. In Section 4, we describe the
proposed DataFrame benchmark. Section 5 details our initial
experiments and discusses their results. We discuss future
improvements and conclude the paper in Section 6.

II. BACKGROUND

An important motivation for the AFrame project comes from
the need to make the management of large-scale modern data
available to the larger audience of the data science community
by integrating the DataFrame user experience with a big data
management system. Here we discuss the foundations of ex-
ploratory data analysis and some advantages and disadvantages
of its standard evaluation strategy.

A. Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) [38] is an investigation
process employed by analysts to extract information, identify
anomalies, discover insights, and understand the underlying
structures and characteristics of a dataset. The goal of EDA is
to provide analysts with clues and a better understanding of the
data in order to formulate reasonable hypotheses. Important
applications of EDA include, but are not limited to, data
exploration, cleaning, manipulation, and visualization.

Frameworks and technologies often used in these applica-
tions span across the fields of statistics and machine learning.
There are a large number of prepackaged machine learning
libraries that cover a wide variety of user requirements. How-
ever, not all of the machine learning frameworks that work out
of the box are designed to work in a distributed environment.
As a result, analysts have to resort to large-scale machine
learning frameworks such as MLlib [29] because extensive
effort is required to make locally constructed models operate
on big data. Often times, these large-scale machine learning
frameworks do not cover all types of analysis and models.

Since EDA involves visualizing data, collecting statistics
from the data, and is iterative in nature, most of the available

tools targeting these types of analyses only accommodate
smaller datasets and leave big data processing and the scaling
out of the algorithmic process for data engineers to implement.
In order to reduce the turn-around time and increase produc-
tivity for data analysts, several issues need to be addressed:
1) distributed application of custom machine learning models;
2) providing a seamless migration from a local workflow to a
distributed environment; 3) having a scalable system that can
acquire and operate on ever-changing incoming data.

B. Eager vs. Lazy Evaluation

EDA frameworks such as Pandas target a local workstation
environment and often rely on in-memory processing. These
frameworks require data to be loaded into memory before any
analysis operations can be performed on the data. Once the
data is loaded into memory, analysis operations are evaluated
eagerly, meaning as soon as they are initiated. However, a
similar evaluation strategy is not efficient on large-scale ever-
arriving data, as processing every declared operation without
any optimization would be expensive as it may result in
repetitive scans over massive data.

Eager and lazy evaluation are strategies used in pro-
gramming languages to determine when expressions should
be evaluated [34]. While eager evaluation causes programs
to evaluate expressions as soon as they are assigned, lazy
evaluation is the opposite and delays their evaluation until
their values are required. With eager evaluation, programmers
are responsible for ensuring code optimization to prevent
performance degradation due to unnecessary operations over
large datasets. Lazy evaluation, on the other hand, delays
execution until values are required; it is employed to help
with operation optimizations where multiple operations can
be chained together, extended, and a single iteration over the
source collection can be processed, e.g., as in LINQ [28].
As a result, lazy evaluation is more suitable for exploratory
operations on large-scale data. Its performance improvement
becomes critical as the size of the data grows.

C. Related Platforms

We can compare and contrast existing systems in terms of
Big data platforms and DataFrame technology.

1) Big Data Platforms: Here we consider frameworks that
can operate on distributed data.

Apache Spark: Apache Spark [40] is a general-purpose
cluster computing system that provides in-memory parallel
computation on a cluster with scalability and fault tolerance.
SparkSQL [20] is a module to simplify users’ interactions with
structured data. SparkSQL integrates relational processing
with Spark’s functional programming. MLlib [29], which is
built on top of Spark, provides the capability of constructing
and running machine learning models on distributed data.
However, Spark does not provide data management and it
requires the installation of a distributed file system like HDFS.

Hive: Apache Hive [3] is data warehouse software built
on top of Apache Hadoop for providing data summary, query,
and analysis capabilities. The introduction of Hive reduced the



complexity of having to write pure MapReduce programs by
providing a SQL-like interface and translating the input queries
into MapReduce programs to be executed on the Hadoop
platform. Now Hive also includes Apache Tez [6] and Apache
Spark [5] as alternative query runtimes. However, to leverage
Hive’s processing power, knowledge of SQL is essential in
addition to being able to install and appropriately configure
and manage Hadoop and HDFS.

Apache AsterixDB: Apache AsterixDB [2], [18] is a par-
allel open source Big Data Management System (BDMS)
that provides full distributed data management for large-
scale, semi-structured data. AsterixDB utilizes a NoSQL style
data model (ADM) which is a superset of JSON. Before
storing data into AsterixDB, a user can create a Datatype,
which describes known aspects of the data being stored, and
a Dataset, which is a collection of objects of a Datatype.
Datatypes are “open” by default, in that the description of the
data does not need to be complete prior to storing it; additional
fields are permitted at runtime. This allows for uninterrupted
ingestion of data with ever-changing data schemas. AsterixDB
provides SQL++ [21], a highly expressive semi-structured
query language for users that are familiar with SQL, to explore
stored NoSQL data.

Figure 1 shows an example of creating an open datatype
‘Tweet’ with only the field ‘id’ being pre-defined and two
datasets called ‘TrainingData’ and ‘LiveTweets’ which store
records of this Tweet datatype. The TrainingData dataset is
populated by reading data from a local file system. In this
example, it is being populated using a labeled airline sentiment
dataset. AsterixDB also provides support for user-defined
functions (UDFs) and built-in live social media data acqui-
sition through its data feed feature. The LiveTweets dataset
is populated by connecting a data feed called ‘TwitterFeed’
that continuously ingests Twitter data. (More details on how
to create a live Twitter feed can be found in [2], [17]). Figure 1
also creates two indexes on the LiveTweets dataset.

CREATE TYPE Tweet AS{id: int64};
CREATE DATASET TrainingData(Tweet);
CREATE DATASET LiveTweets(Tweet);
LOAD DATASET TrainingData USING localfs
(("path"="1.1.1.1:///airline_data.json"),
("format"="adm"));

CREATE FEED TwitterFeed WITH {...};
CONNECT FEED TwitterFeed TO LiveTweets;
START FEED TwitterFeed;

CREATE PRIMARY INDEX ON LiveTweets;
CREATE INDEX coordIdx ON LiveTweets(coordinate);

Fig. 1: SQL++ queries
2) DataFrames for Data Science: Here we consider li-

braries that provide a DataFrame facility.
Pandas: Pandas [12] is an open source data analysis tool

that provides an easy-to-use data structure built specifically to
support data wrangling in Python. Pandas reads data from var-
ious file formats (e.g., CSV, SQL databases, and Parquet) and
creates a Python object, DataFrame, with rows and columns
similar to a table in Excel. Pandas can be integrated with

scientific visualization tools such as Jupyter notebooks [25];
Jupyter notebooks provide a unified interface for organizing,
executing code and visualizing results without referring to
low-level systems’ details. The rich set of features that are
available in Pandas makes it one of today’s most popular tools
for data exploration. However, its limitation lies in scalability.
Pandas does not provide either data storage or support for
interacting with distributed data, as its focus has been on in-
memory computation on a single node. Another well-known
Pandas’ limitation is its memory consumption. This is caused
by the underlying internal memory requirements about which
the Pandas creator, McKinney, advised: “you should have 5 to
10 times as much RAM as the size of your dataset” [1].

R Data Frames: R [14] is a language originally built for
statistical computing and graphics. Since R is primarily used
for statistical analysis, R has become one of the most popular
languages in the data science community. R also provides Data
Frame as a built-in native data structure, but working with data
larger than memory in R still requires a distributed framework
and data storage setup. For example, SparkR [39] is an R
package created by Apache Spark that supports distributed
operations like R Data Frames but on large datasets.

Spark DataFrames: Spark also provides a DataFrame
API [19] to enable the wider audience of the data science
community to leverage distributed data processing. This API is
designed to support large-scale data science applications with
inspirations from both the R DataFrame and Python Pandas.
Spark employs the lazy evaluation technique to perform com-
putations only when values are required. This is different from
the eager evaluation strategies used in Python and R. Lazy
evaluation is exploited by Spark’s query optimizer, which un-
derstands the structure of the data and the operations. In order
for Spark to determine the input data schema for unstructured
data, a process called ‘schema inference’ is required and can
result in long wait times for data that does not fit in memory.

Pandas on Ray: Pandas on Ray, which recently become a
part of the Modin project [11], is a recent attempt to make
Pandas DataFrames work on big data by providing the Pandas
syntax and transparently distributing the data and operations
using Ray [31]. Ray uses shared memory and employs a
distributed scheduler to manage a system’s resources. Pandas
on Ray automatically utilizes all available cores on a machine
or a cluster to execute operations in parallel. Since the Ray
framework handles large data through shared memory, it
requires a cluster with sufficient aggregate memory to hold
the entire dataset. In addition, Pandas on Ray uses Pandas
as a black box at its core, which does not address the high
memory consumption issue of Pandas.

III. AFRAME SYSTEM ARCHITECTURE

Exploratory tools such as Pandas work well against locally
stored data that fits in the memory of a single machine, but this
is not a solution for large-scale analysis. Still, Pandas is one
of the most widely used libraries for data exploration due to
the analyst-friendly characteristics of its data structure. As a
result, we set out to integrate a Pandas-like user experience



with big data management capabilities to provide analysts
with a familiar environment while scaling out their analytic
operations over a large data cluster to enable big data analysis.

Our goal in the AFrame project is to create a unified system
that can efficiently support all of the various stages [30]
in data science projects, from data understanding to model
deployment and application, thus enabling very large-scale
analysis and requiring little or no modification to analysts’
existing local workflows. Instead of building such a system
from scratch, we extend Apache AsterixDB with support for
the use of machine learning libraries and with interactive
data exploration capabilities. Here we describe the underlying
architecture of AFrame, the relevant AsterixDB features, and
illustrate AFrame’s basic functionality through a small run-
ning example that shows how to perform a simple sentiment
analysis on ever-growing Twitter data.

A. Acquiring Data

AFrame is an API that provides a DataFrame syntax to
interact with AsterixDB’s datasets; it targets data scientists
who are already familiar with Pandas DataFrames. AFrame
works on distributed data by connecting to AsterixDB’s web-
service using its RESTful API. Figure 2 shows how users can
use AFrame in a Jupyter notebook to access datasets stored
in AsterixDB. Input 2 (labeled “In [2]”) creates an AFrame
object (trainingDF) from the TrainingData dataset initialized
via the SQL++ statements in Figure 1. Input 3 creates another
AFrame object (liveDF) from the LiveTweets dataset, which
is connected to a data feed that continuously ingests data
from Twitter. Building on top of AsterixDB allows AFrame to
operate on such live data the same way as it does on a static
dataset without requiring additional knowledge about how to
setup a streaming engine. Since Figure 1 created indexes on
the LiveTweets dataset, the incoming data is also appropriately
stored and indexed for efficient data access.

Fig. 2: Initializing AFrame Objects

B. Operating on Data

As most EDA tools are designed to work with in-memory
data, the eager evaluation strategy can suffice even when a
session involves multiple scans over the entire dataset. How-
ever, multiple scans over a large distributed dataset would be
very costly and have a negative effect on system performance.

AFrame leverages lazy evaluation. AFrame operations are
incrementally translated into SQL++ queries that are sent to
AsterixDB (via its RESTful API) only when final results are
called for. Figure 3 shows an example of some expressions
in AFrame when issuing Pandas-like DataFrame expressions.
Input 4 (labeled In [4]) issues a selection predicate on the
live dataset declared in Figure 2. Input 5 performs attribute
projections. Neither inputs 4 or 5 trigger query evaluation; they
only modify an underlying AFrame query. Input 6 performs

an action that requests the actual output of two records,
so AFrame takes the underlying query, appends a ‘LIMIT
2’ clause to it, sends it to AsterixDB for evaluation, and
displays the requested data. For debugging purposes, AFrame
allows users to observe the underlying query resulting from
the incremental query formation process. Input 7 prints the
underlying query resulting from Input 4. Input 8 prints the
underlying query of Input 5 (which adds projected attributes
to the selection query). These are examples of queries that
correspond to simple DataFrame operations. However, even
complex DataFrame expressions that result in nested SQL++
queries are efficiently translated into optimized query plans
in order to minimize data access. This is another benefit of
operating on AsterixDB and utilizing its query optimizer.

In its early development stage, AFrame today covers es-
sential Pandas’ operations for exploratory analyses that are
suitable for large-scale unordered data. Currently, AFrame’s
supported operations include column selection and projection,
statistical operations (e.g., describe), arithmetic operations
(e.g., addition, subtraction, etc.), applying functions, joining,
categorizing data (sorting and ordering), grouping (group by
and aggregation), and persisting data.

Fig. 3: DataFrame expressions and underlying queries

C. Support for Machine Learning Models

Following the data wrangling and hypothesis forming pro-
cess, distributed systems are often required to accommodate
the development and usage of customized machine learning
models. The goal of the modeling step is to create an effective
machine learning model that can make accurate predictions.
With AFrame, analysts can apply either a prepackaged model
or create a custom machine learning model from their local
environment that can be applied to a distributed dataset directly
from within a Jupyter notebook.

Figure 4 illustrates a sentiment classifier training session
using Python, Scikit-Learn [33], Pandas, and AFrame. It
trains a classifier on the training dataset from Figure 2. This
is a dataset, publicly available on Kaggle [10], containing
Twitter posts related to users’ experiences with U.S. airlines
released by CrowdFlower [7]. The dataset contains labeled



Fig. 4: Training a Scikit-Learn Pipeline

tweet sentiments which are positive, negative, and neutral.
The first step in Figure 4 selects a subset of attributes from
the training dataset. Since the subsetted training data is small
enough to fit in a single node’s memory1, here we convert it
to a Pandas DataFrame and use it to build and train a Scikit-
Learn pipeline to classify sentiment values. The last step after
training the model saves it as an executable which can then
be dropped into AsterixDB and utilized as a UDF.

In Figure 5, we show sample code for applying machine
learning models in AFrame using the Pandas-style map func-
tion syntax on the ‘text’ column to get sentiment value
predictions. Input 10 in the figure displays a sample of the text
column from the liveDF dataset created in Figure 2. Input 11
applies the pre-trained Stanford CoreNLP sentiment analysis
model [37] to the text column and displays two records. The
CoreNLP sentiment annotator produces 5 sentiment classes
ranging from very negative to very positive (0-4). Input 12
applies our custom Scikit-Learn sentiment analysis model
(created in Figure 4) to the same data.

Under the hood, AFrame utilizes AsterixDB’s UDF frame-
work to enable users to import and then apply their own
machine learning models written in popular programming
languages (e.g., Java and Python) as functions.

Fig. 5: Applying CoreNLP and Scikit-Learn models
D. Result Persistence

After constructing a model, the next step would be to
deploy the model and to apply it on real data. Input 13
in Figure 6 shows an example of how to apply the Scikit-
Learn sentiment function to the ‘text’ field of a queried

1Scikit-Learn’s model training is required to take place on a single-node,
but we are then able to utilize its trained models in a distributed setting.

subset (coords) of the live Twitter records resulting from the
operations in Figure 3. It then saves the sentiment prediction
as a new field called ‘sentiment’. Input 14 selects only records
with negative sentiment for future root cause analysis. In
AFrame, the result of an AFrame operation can optionally be
persisted as another dataset by issuing the ‘persist’ command
and providing a new dataset name, as shown by Input 15 in
Figure 6. Persisting an analysis result is efficient here, as the
data has never left AsterixDB storage and the new dataset
(demo.negTweets) can be accessed right away without having
to wait for a file scan. Input 16 displays sampled records
from the new dataset created using AFrame; their sentiment is
negative and they only contain a subset of the attributes from
the original dataset.

Fig. 6: Persist Sentiment Analysis Results

E. Summary

We have demonstrated through an example how to use
AFrame to acquire live Twitter data, manipulate the data,
train and apply a custom Scikit-Learn model to get senti-
ments from the data, and save an analysis result for further
investigation. AFrame provides a Pandas-like user experience
without suffering from Pandas’ single-node and in-memory
requirements. AFrame does not load all data from a file or
store its intermediate analysis results in memory. It can utilize
database features to efficiently retrieve data and accelerate data
manipulation on large-scale distributed data. By offloading
data management to a distributed database system, AFrame
remains a lightweight library that provides a scale-independent
user experience to data scientists with any level of expertise.

IV. A DATAFRAME BENCHMARK

In order to evaluate our AFrame implementation and com-
pare its performance to that of other distributed DataFrame
libraries, we have constructed a preliminary DataFrame bench-
mark. Inspired by the early Wisconsin Benchmark [23] from
the relational world, we propose a benchmark that evaluates
DataFrames in several key dimensions that are important to
conducting large-scale data analyses. This is similar to how
the Wisconsin Benchmark was used to assess early relational
database system performance. We also aim to provide mem-
bers of the data science community with a tool to help them
select a framework that is best suited to their project.



Our DataFrame Benchmark is designed to evaluate the
performance of DataFrame libraries against data of various
sizes in both local and distributed environments. As an initial
set of evaluated systems, we selected the following DataFrame
frameworks: Pandas, PySpark, Pandas on Ray (Modin), and
AFrame. There are several factors that contributed to our
framework selection. First, since our goal is to support
DataFrame syntax on large-scale data, it is appropriate to com-
pare how systems perform with regard to the original Pandas
DataFrames in a single node environment. Second, Apache
Spark is a popular framework for distributed processing of
large-scale data, so comparing against Spark DataFrames gives
us a good understanding and comparison to a commercial and
well-maintained DataFrame project. Pandas on Ray is another
project that is trying to solve the same data scientists’ problem,
but using a different approach, so we also include it in our
initial set of platforms.

A. Benchmark Datasets

In order to discover useful information from large volumes
of modern data, most data science projects rely on data
exploration. DataFrames are one of the most popular data
structures used in data exploration and manipulation. A mature
DataFrames library must be able to handle exploratory data
manipulation operations on large volumes of data efficiently.
The design of our DataFrame micro benchmark aims at
reflecting these expectations in its workload.

For our benchmark datasets, we have chosen to use a
synthetically generated Wisconsin benchmark dataset instead
of using data from social media sites to allow us to precisely
control the selectivity percentages, to generate data with
uniform value distributions, and to broadly represent data for
general analysis use cases (not just social media). A specifica-
tion of the attributes in the Wisconsin benchmark’s dataset is
displayed in Table I. The unique2 attribute is a declared key
and is ordered sequentially, while the unique1 attribute has 0
to (cardinality-1) unique values that are randomly distributed.
The two, four, ten and twenty attributes have a random order-
ing of values which are derived by an appropriate mod of the
unique1 values. The onePercent, tenPercent, twentyPercent,
and fiftyPercent attributes are used to provide access to a
known percentage of values in the dataset. The dataset also
contains three string attributes: stringu1, stringu2, and string4.
The stringu1 and stringu2 attributes derive their values from
the unique1 and unique2 values respectively. The string 4
attribute takes on one of four unique values in a cyclic fashion;
its unique values are constructed by forcing the first four
positions of a string to have the same value chosen from a
set of four letters: [A, H, O, V].

For our DataFrame benchmark, we used a JSON data
generator to generate Wisconsin datasets of various sizes
ranging from 1 GB (0.5 million records) to 40 GB (20 million
records). In addition to JSON, we also evaluate systems using
other widely used input formats, namely Parquet [4] and CSV.

Attribute name Attribute domain Attribute value
uniquel O..(MAX-1) unique, random
unique2 O..(MAX-1) unique, sequential
two 0..1 uniquel mod 2
four 0..3 uniquel mod 4
ten 0..9 uniquel mod 10
twenty 0..19 uniquel mod 20
onePercent 0..99 uniquel mod 100
tenPercent 0..9 uniquel mod 10
twentyPercent 0..4 uniquel mod 5
fiftyPercent 0..1 uniquel mod 2
unique3 O..(MAX-1) uniquel
evenOnePercent 0,2,4, ...,198 onePercent*2
oddOnePercent 1,3,5, ...,199 (onePercent *2)+ 1
stringul per template derived from uniquel
stringu2 per template derived from unique2
string4 per template cyclic: A, H, O, V

TABLE I: Scalable Wisconsin benchmark: attributes [23]

B. Benchmark Queries

The essential characteristic that makes DataFrame an ap-
pealing choice for data scientists is its stepwise syntax for
exploratory tasks and data manipulation. As a result, we
have designed our benchmark queries to target a set of
core exploratory operations and visualization tasks. Table II
summarizes the details of our initial DataFrame benchmark
expressions. All evaluated frameworks except Pandas on Ray
provide support for all of our benchmark expressions. Pandas
on Ray defaults back to Pandas if the given expression has not
yet been implemented to take advantage of its parallel process-
ing engine. (In our case, these expressions are expressions 4,
8, and 12 in Table II.) Our initial set of expressions consist of
analysis operations that include selection, projection, grouping,
sorting, aggregation, and join. For expressions 2, 5, 9, and 10,
we only asked for sampling because loading the entire dataset
into memory would not be desirable in an exploratory big data
context. For the join expression, both datasets are of the same
size with the same number of records ranging from 1 GB to
40 GB. When executing the benchmark, each expression is
run 15 times, and the first five results were excluded from the
calculation to account for any JVM warm-up overheads. The
recorded results are averaged over 10 runs. Our DataFrame
benchmark expressions are detailed in Table II. We randomly
generated values for the expression predicates (e.g., df[‘ten’]
== $x ) that fall within the tested attributes’ range to reduce
the effect of any in-memory caching between runs.

C. Evaluated System Details

The details of each systems’ setup are provided below.
Pandas: Pandas DataFrame only works on a single machine

environment and on data that fits in memory. It is important to
note that Pandas only utilizes a single core for processing and
that we use it with its default settings (without any additional
configuration). It is labeled “Pandas” in the experimental
results presented in this paper.

Spark: Spark indicates in its DataFrame API document that
there is a significant difference in its DataFrame creation time
when reading from JSON files if a data schema is provided.
This performance benefit comes from eliminating its initial
schema inference step. As a result, a dataset schema was
also included in our benchmark. For single node experiments,



ID Operation Description DataFrame Expression
1 Total Count Total count len(df)
2 Project Project records on attributes two and four df[[‘two’,‘four’]].head()

3 Filter & Count Count records that satisfy column conditions len(df[(df[‘ten’] == x) & (df[‘twentyPercent’] == y) &
(df[‘two’] == z)])

4 Group By Count records with the same column value df.groupby(‘oddOnePercent’).agg(‘count’)
5 Map Function Apply a function to a column df[‘stringu1’].map(str.upper).head()
6 Max Retrieve a max column value df[‘unique1’].max()
7 Min Retrieve a min column value df[‘unique1’].min()
8 Group By & Max Retrieve the max column value for each group df.groupby(‘twenty’)[‘four’].agg(‘max’)
9 Sort Order records based on a column df.sort_values(‘unique1’, ascending=False).head()
10 Selection Retrieve some records that satisfy column conditions df[(df[‘ten’] == x)].head()
11 Range Selection Count records in a selected range len(df[(df[‘onePercent’] >= x) & (df[‘onePercent’] <= y)])

12 Join & Count Count records resulting from an inner join len(pd.merge(df, df2, left_on=‘unique1’,
right_on=‘unique1’,how=‘inner’))

TABLE II: Benchmark Operations (df, df2 = DataFrame objects, x,y,z = variables representing random values within range)

we used Spark in its local standalone operating mode. In the
distributed environment, we configured HDFS as its distributed
storage and used its standalone cluster manager. We evaluated
Spark’s DataFrame on both JSON and Parquet data using
the default setup configurations. The three evaluated Spark
variations are labeled “Spark JSON”, “Spark JSON Schema”,
and “Spark Parquet” in the experimental results section.

AFrame: In order to evaluate AFrame, the benchmark
datasets are expected to be resident in AsterixDB (as opposed,
e.g., to HDFS) when running the operations. Similar to the
Wisconsin benchmark queries, some of the expressions can
benefit from indexes, so we executed the queries on both
indexed and non-indexed data. Also, even though AsterixDB’s
default data typing is open, there is some benefit when a data
schema is provided. Since we also provided Spark with a
schema, we decided to also evaluate AFrame on a closed data
type with the same pre-defined schema. The three evaluated
AFrame variations are labeled “AFrame”, “AFrame Schema”,
and “AFrame Index” in the experiments presented here.

Pandas on Ray: When we began evaluating the systems,
Pandas on Ray had not yet provided cluster installation in-
structions, so we executed the DataFrame benchmark only on
its single node setup. Notably, Pandas on Ray has implemented
an impressive number of Pandas’ operations to utilize all of the
available cores in the given system. (For functions that have
not been parallelized, it defaults back to using the original
Pandas’ operations.) When we did a preliminary run of the
benchmark to check supported expressions, we noticed that
Pandas on Ray had not yet parallelized Pandas’ load json
method, so we decided to evaluate Pandas on Ray using CSV
files instead. Pandas on Ray is based on a shared, in-memory
architecture; its strength lies in in-memory computation. How-
ever, the project has started to implement support for large
datasets using disk as an overflow for in-memory DataFrames.

D. Experimental Setup

Our DataFrame benchmark provides a set of configurable
parameters to enable both single-node and cluster performance
evaluations. The same suite of benchmark queries were applied
to both settings. Each evaluated framework handles DataFrame
creation differently, and some utilize an eager evaluation
strategy while the others employ lazy evaluation. On top of
that, depending on the flow of an analysis session, data might

or might not already be available in memory, resulting in
additional time to create a DataFrame before issuing analytic
operations. Sometimes, when only a small subset of the data
is needed, DataFrame creation time can dominate the overall
actual operation time. As a result, we separately consider
expression-only run times and total run times (which include
both the DataFrame creation and expression execution times).

In order to provide a reproducible environment for evaluat-
ing these systems, we set all of the evaluated systems up and
executed our benchmark on Amazon EC2 instances. For each
node, we selected the m4.large instance type with the Linux
16.04 operating system, 2 cores, 8 GB of memory, and 100
GB of SSD.

1) Single-Node Setup: We generated the Wisconsin bench-
mark as JSON data in various sizes ranging from 1 GB (0.5
million records) to 10 GB (5 millions records). The Parquet
and CSV datasets were created by converting the JSON files;
they contained the exact same logical records as the JSON
datasets. Table III shows the numbers of records and the byte
sizes of each dataset for all file formats. The sizes of the
Parquet files are significantly smaller due to its compression
and its internal data representation. The JSON structure is
based on key-value pairs. Each JSON record contains all of the
necessary information about its content, and in principle each
record could contain different fields in different orders. CSV
is more compact than JSON due to the facts that its schema
is only declared once for the whole file and that each record
has an identical list of fields in the exact same order. Parquet
is a column-oriented binary file that contains metadata about
its content. Parquet is the most compact file format among the
three formats tested.

Dataset Name
XS S M L XL

Number of Records 0.5 mil 1.25 mil 2.5 mil 3.75 mil 5 mil
JSON File Size 1 GB 2.5 GB 5 GB 7.5 GB 10 GB
Parquet File Size 43 MB 110 MB 217 MB 317 MB 426 MB
CSV File Size 715 MB 2.3 GB 4.6 GB 6.8 GB 9.3 GB

TABLE III: Dataset Summary (mil = million)

2) Multi-Node Setup: For the multi-node setting, we only
evaluated Spark and AFrame. The evaluated cluster size
ranged from 2-4 nodes, where each node is a worker except for
one node that is also a master. Speedup and scaleup are the two
preferred and widely used metrics to evaluate the processing



performance of distributed systems, so we evaluated the two
systems using these two metrics.

Speedup Experiment: Ideal speedup is when increasing
resources by a certain factor to operate on a fixed amount of
data results in the overall task processing time being reduced
by the same factor. As a result, speedup reduces the response
time, which also makes resources available sooner for other
tasks. Linear speedup is not always achievable due to reasons
such as start up cost and system interference between parallel
processes accessing shared resources.

For our DataFrame benchmark, we conducted speedup
experiments using a fixed size dataset while increasing the
number of machines from one up to four. The details are
summarized in Table IV, where aggregate memory is the sum
of all of the available memory in the cluster.

1 node 2 nodes 3 nodes 4 nodes
Aggregate Memory 8 GB 16 GB 24 GB 32 GB
JSON File Size 10 GB 10 GB 10GB 10 GB
Parquet File Size 426 MB 426 MB 426 MB 426 MB

TABLE IV: Speedup Experiment Setup

Scaleup Experiment Ideal scaleup is the system’s ability
to maintain the same response time when both the system
resources and work (data) increase by the same factor.

For the scaleup experiments, we increased both the number
of machines and the amount of data proportionally, as sum-
marized in Table V, to measure each system’s performance.

1 node 2 nodes 3 nodes 4 nodes
Aggregated Memory 8 GB 16 GB 24 GB 32 GB
JSON File Size 10 GB 20 GB 30GB 40 GB
Parquet File Size 426 MB 818 MB 1.33 GB 1.75 GB

TABLE V: Scaleup Experiment Setup

V. INITIAL BENCHMARK RESULTS

In this section, we present the initial experimental results
from both the single-node and cluster environments.

A. Single Node Results

For the single-node evaluations, we ran the test suite first on
the XS Wisconsin dataset as a preliminary test to determine
the level of feature support in each framework and to observe
their relative performance across all twelve expressions. The
XS results are displayed in Figure 7. After the first round, we
ran the benchmark on four other dataset sizes, S, M, L and XL
to evaluate the data scalability of each framework on a single
node. Due to space limitations, Figure 8 only displays selected
results that illustrate some key advantages and disadvantages
of each evaluated system. Note that Figures 7a to 7d and 8e
are all in log scale. As mentioned in the experimental setup
section, we present both the expression run times and the total
run times (which include the DataFrame creation times).

1) Baseline Performance Results: The XS results are pre-
sented in Figure 7. Figures 7a and 7b show the total run times
(including DataFrame creation). Figure 7a displays expression
1-6’s results and Figure 7b displays expression 7-12’s results.

Figures 7c and 7d show the expression-only execution times.
Figure 7c displays expression 1-6’s results, and Figure 7d
displays expression 7-12’s results. The differences between the
total and expression-only times indicate that the DataFrame
creation process can significantly impact performance.

Pandas requires data to be loaded into memory before its
operation evaluations. Since it was not designed for parallel
processing, the total run time including DataFrame creation
was high for Pandas in all of the test cases. However, once
the data was loaded into memory, as shown in Figures 7c and
7d, Pandas performed the best in 10 of the 12 expressions. The
two cases where Pandas was not the fastest were Expressions 5
and 10, and the reason was Pandas’ eager evaluation strategy.
Expression 5 applies a function to a string column, while
expression 10 selects rows that satisfy a column predicate.
However, in the end, both expressions 5 and 10 require only
a small subset (head()) of rows from the dataset. The strict
nature of Pandas’ eager evaluation caused both the function
and the predicate to be applied to the whole dataset before
selecting only a few samples to return. On the other hand,
with lazy evaluation, the expressions can be applied to just
the subset of data needed to fulfill the result’s required size.

Pandas on Ray leverages parallel processing by utilizing
all available cores in a system to load and process the data.
However, there are overheads associated with distributing a
DataFrame, as we can see from Figures 7c and 7d, where
Pandas outperformed Pandas on Ray on all but one expression.
However, Pandas on Ray’s total run time was better than
Pandas’ due to parallel data loading. As the size of the data
grows, so does the time taken to process the data. Pandas
on Ray outperforms Pandas when the task processing time
dominates its work distribution overheads.

Among the three Spark DataFrames, the Parquet-based
DataFrame (Spark Parquet) outperformed the JSON-based
DataFrame (Spark JSON) and the JSON-based DataFrame
with a pre-defined schema (Spark JSON Schema) in most
of the tested cases for both the total and expression-only
evaluation metrics. Spark produces different runtime plans for
the JSON-based DataFrame and the Parquet-based DataFrame,
resulting in the difference in their task execution times even
after the schema inferencing step.

AFrame was the fastest in terms of the total-time evaluation
since its DataFrame creation process does not involve first
loading data into memory from a file. In addition, AFrame
also benefits from the presence of database indexes. Its total-
time performance results for the datasets with indexes are an
order of magnitude faster, as seen for Expressions 1 and 11.
Even in terms of just the expression-only time, AFrame with
an index on the range attribute performed better than Spark
Parquet on Expression 11 (see Figure 7d).

2) Scalability: After the first evaluation round, we eval-
uated the systems’ single-node data scalability by running
each expression on all five different data sizes. Due to space
limitations, we only display a selected subset of the results.
(The full set of results can be found in [36].) As we can
see from Figures 8a and 8b, Pandas and Pandas on Ray
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Fig. 7: XS Results of Single Node Evaluation

were not able to complete the DataFrame creation process
for the M-XL datasets (5-10 GB) due to insufficient memory.
A possible workaround would be to load the data in smaller
chunks; we did not consider applying this workaround because
it would result in customizing the data chunk size and that
would directly affect the performance evaluation. Pandas on
Ray suffers from the same memory limitations as Pandas since
it uses Pandas internally.

The results of our single node scalability evaluation are
largely consistent with those from our first run of functionality
checking. There are some interesting results in the cases of
running Spark on L and XL datasets, which are 7.5 and
10 GB of JSON data (Figures 8a to 8d). These results are
much slower than the others in terms of both the total and
expression-only elapsed times. These results are explained by
Spark’s default settings and its memory management policy.
By default, Spark reserves one GB less than the available
memory (MAX MEMORY - 1) for its executor’s memory.
In our case this results in 7 GBs of memory being reserved
for the executor tasks. When working with data that is larger
than the available memory, Spark processes it in partitions
and spills data to disk if it has insufficient memory. The L
and XL datasets require Spark to spill to disk in order to
complete the tasks, which results in long task execution times.
In the Spark JSON case, providing a schema when creating
a DataFrame from JSON files allows Spark to completely
skips the schema inference step. This results in a lower total
run time than when a schema is not provided. However,
excluding the DataFrame creation time, whether or not the
schema was provided, there was no significant performance

difference between Spark JSON and Spark JSON Schema
across all expressions.

In contrast to JSON, Spark’s Parquet-based DataFrame
performance results were consistent throughout all data sizes
because the Parquet files are much smaller than the JSON
files used to generate them. Since Parquet is supplied with a
data schema and is a column-oriented format, it is especially
suitable for column-based queries such as attribute projections.
One factor to keep in mind is that even the Parquet-based
DataFrame requires some DataFrame creation overhead. Fig-
ure 8c displays the total elapsed time for expression 3, which
asks for the count of records that satisfy column conditions.
We can see that for the XS and S datasets, the Parquet-
based DataFrame total time results were slower than AFrame.
However, as the data size increases and the task processing
time becomes more prominent, the Parquet-based DataFrame
starts to have a better run time than AFrame. The Spark
Parquet-based DataFrame starts to benefit when the operation
time exceeds the DataFrame creation time. In turn, for the
expressions that require access to whole records, such as
expression 10, as seen in Figure 8f, Spark’s JSON-based
DataFrame performed significantly better than its Parquet-
based (columnar) DataFrame. Even in the case that includes
the DataFrame creation time, shown in Figure 8e, Spark’s
JSON-based DataFrame with a pre-defined schema was faster
than Parquet for all data sizes for Expression 10.

AFrame benefits from database optimizations like query
planning and indexing. For expression 1, which asks for a total
record count, AFrame with a primary key index performed the
best for all data sizes. AFrame benefits from having indexes
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Fig. 8: Selected Single Node Evaluation Results (* = value where the bar ends)

on the join attributes (Expression 12), as shown earlier in
Figure 7b; also as the size of the dataset gets larger, the others
suffer more from long DataFrame creation times because
they have to scan an additional dataset for this expression.
AFrame was faster than Spark’s JSON-based DataFrames in
most of the test cases in Figure 7 and continued to be so as
shown in Figure 8 for both expression-only and total times
evaluations. AFrame without indexes was slower than Spark
Parquet in most of the column-based expression-only times.
However, for whole-row-based expressions, such as expression
10 (Figures 8e and 8f), AFrame without indexes performed
better than Spark Parquet and were the best for both the
expression-only and total run time evaluations.

B. Multi-Node Results

For the distributed environment evaluation, as mentioned
earlier, we have only evaluated Spark and AFrame. We eval-
uated Spark on the same three DataFrame creation sources:
JSON, JSON with schema, and Parquet. Likewise, we eval-

uated AFrame on its same three datasets, which are datasets
with an open datatype, with a schema, and with an index.

For the multi-node evaluation, we evaluated the systems’
performance in a distributed environment. As we observed in
the single node evaluation, Spark spills to disk for both the L
and XL datasets (7.5 and 10 GB), which significantly affected
its performance. In order to observe the effect of clusters
processing data that is larger than the available aggregate
memory, we chose to start our multi-node evaluation with the
10-GB dataset. Here we evaluated both systems according to
both the speedup and scaleup metrics.

The multi-node evaluation was performed on ec2 machines
with the same specifications as the single node evaluation. Due
to space limitations, Figures 9 and 10 only display selected
multi-node scaleup and speedup evaluation results. (Again, the
full set of results are available in [36].)

1) Speedup Results: The results for both Spark and AFrame
are consistent with their single-node results in terms of their
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Fig. 9: Selected Multi-Node Speedup Evaluation Results (log scale) 
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Fig. 10: Selected Multi-Node Scaleup Evaluation Results

performance rankings. Both systems processed the tasks faster
when increasing the number of processors while maintaining
the same data size. Spark’s performance improved drastically
when the distributed data begin to fit in memory in the case
of JSON DataFrames. Figures 9a and 9b show that increasing
the number of processing nodes reduces Spark JSON-based
DataFrame’s run time by an order of magnitude in the case of
going from a single node to a 2-node cluster. However, once
the data fits in memory, increasing the number of nodes no
longer results in such a drastic change (as we can see from the
flatter lines for both of Spark’s JSON-based DataFrames going
from 2 nodes to 4 nodes). For expression 1, AFrame with
an index and Spark’s Parquet-based DataFrame performed
the best. AFrame operating on a dataset with a primary
key index was faster than Spark in the total time case, and
Spark’s Parquet-based DataFrame was best in terms of the
expression-only time. Similar to the single node results, the
Parquet-based DataFrame was the slowest in expression-only
evaluation when access to the entire data record is required, as
seen for expression 10 in Figure 9d across different numbers
of nodes. In both Figures 9c and 9d, AFrame with and without
schema are the fastest.

2) Scaleup Results: In Figure 10, selected scaleup results
for Spark and AFrame are presented. No single system
performed the best across all tasks. Spark’s Parquet-based
DataFrame was the fastest for column-based expressions and
was consistently competitive, but it also incurred an overhead
for DataFrame creation. However, for row-based expressions,

AFrame continued to follow the same trend from the single
node case with the XL dataset, outperforming Spark Parquet.

As we saw in Figure 10c, by providing the Spark JSON-
based DataFrames with a schema, the total time is reduced
by an order of magnitude, especially when only a subset of
data is required. Expression 10 only samples a few records
from a large dataset, which causes the schema inference time
to otherwise dominate the actual expression execution time.

C. Discussion

Pandas performed competitively on all tasks for a single
node when the data fits in memory. However, its weaknesses
lie in resource utilization and scalability. The memory require-
ment for Pandas is large and it can only take advantage of a
single processing core. In addition, Pandas’ eager evaluation
strategy has disadvantages when expressions involve poten-
tially repetitive tasks. Operations that only view a small subset
of the data took longer on Pandas than on frameworks that
utilize parallel processing and/or lazy evaluation.

Pandas on Ray did an excellent job in functionally covering
Pandas operations. It reroutes operations to the default Pandas
when its parallel work distribution has not been enabled for
an operation. While treating Pandas DataFrame as a black
box does not solve the problem of its memory requirement,
it utilizes parallel processing for loading and processing data
in order to speed up the computation. Evaluating the system
as-is reveals that there can be significant overhead associated
with work distribution for Pandas on Ray. This is a known
issue which is mentioned in the project’s own benchmarking



results [13]. Its experimental out-of-core support will be worth
looking into once it is enabled and distributed installation
instructions are provided.

Spark DataFrame provides similar syntax to that of Pandas’
with the ability to operate on data that exceeds the per-
node memory limit; it provides a friendly interface to the
Apache Spark distributed compute engine. While Spark can
operate on large datasets, its performance drastically degrades
when having to work with insufficient cluster memory as
its strength lies in in-memory computation. As a result, on
large datasets, its JSON-based DataFrame was an order of
magnitude slower than AFrame. On the other hand, its Parquet-
based DataFrame performed quite competitively across all data
sizes. Due to its compression, a Parquet file is much smaller
than a JSON file with the same logical data content. Finally,
Parquet is a columnar file format, which makes the Parquet-
based DataFrame an excellent fit for column-based operations
but slower on tasks that require access to the entire payload
of each data record.

A unique characteristic that sets AFrame apart from other
large-scale DataFrame libraries is its ability to operate on man-
aged and indexed data. AFrame benefits from its AsterixDB
backend in several ways. First, it can eliminate repetitive file
scans during the DataFrame creation process since datasets
have been ingested and stored on disk in AsterixDB. Second,
it is able to operate on data larger than the available mem-
ory, seamlessly, without requiring additional effort. Third, it
eliminates issues that could arise from manually managing
large amounts of data from various sources. Flat file storage
requires effort to maintain and can be difficult to share between
multiple users; modifying data in traditional storage can be
prone to corruption because of a lack of transactional support.
In addition, by having a distributed data management system
as its backend, complex DataFrame operations that would
otherwise execute inefficiently can be optimized by a database
query optimizer. AsterixDB provides query plan optimization
and indexing that enable AFrame to perform competitively,
especially in terms of the total time evaluations.

VI. CONCLUSIONS & FUTURE WORK

In this work, we have shown the practicality of utilizing
a distributed data management system to scale data scien-
tists’ familiar DataFrame operations to work against modern
data at scale without requiring distributed data engineering
expertise. We can also increase data analysts’ productivity
by optimizing their operations’ execution times through lazy
evaluation and database query optimization. AsterixDB also
provides additional benefits to AFrame, such as the ability
to utilize pre-trained models from packages such as Scikit-
Learn (as-is) without requiring specialized large-scale machine
learning skills. Finally, with AsterixDB’s built-in social media
data feeds, data scientists can operate on live datasets in the
same way that they would work with static data.

In order to evaluate our initial AFrame prototype, we
have also proposed a DataFrame benchmark for evaluating

DataFrame performance on analytic operations. Our bench-
mark can be used in both single-node and distributed set-
tings. Our experiments showed that AFrame can operate
competitively in both settings. We have also demonstrated
that optimizations can be crucial when dealing with data at
scale. Our DataFrame benchmark, even at this early stage, can
help data scientists better understand the performance of their
workloads and understand distributed frameworks’ tradeoffs.

Moving forward, we have a list of new functionality and
improvements that we would like to implement for both
AFrame and the DataFrame benchmark. We are adding nested
data handling and window functions to AFrame. We also plan
to make AFrame less query language specific by abstracting
its language layer from the DataFrame operation translation
mechanism. We would then be able to deploy AFrame on
other query-based data management systems (e.g., Postgres).

The DataFrame benchmark is preliminary work that has
served a purpose by allowing us to evaluate the feasibility
of AFrame and to compare its initial performance against
other frameworks. However, the benchmark is a work in
progress and needs more analytic operations to be included
in order to evaluate other aspects of distributed DataFrames.
We also intend to add more frameworks (e.g., Dask [8]) to
our evaluation and to deploy them in a much larger distributed
environment.
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